
/*
Copyright 2017 The Kubernetes Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

Unless otherwise specified...

Why Are We Copying
and Pasting So Much?
Philip Wittrock (@pwittrock) & Solly Ross (@directxman12), Google

● Respond to changes to Resources made by users
● Respond to changes to Cluster State

Kubernetes APIs are implemented by Controllers

✓ watch resources,
✓ do some business logic,
✓ reconcile differences,
✓ … and a bit of plumbing

How complicated could it be?

Controllers Are Simple

~/go/src/k8s.io/sample-controller $ wc -l < controller.go
429
~/go/src/k8s.io/sample-controller $ tree -I vendor
<snip>
28 directories, 52 files

Sample Controller at a Glance

Sample Controller

Sample Controller

This is not a flame chart

Note: Boilerplate code to copy-paste highlighted in Red

At least the comments are thorough...

// We call Done here so the workqueue knows we have finished
// processing this item. We also must remember to call Forget if we
// do not want this work item being re-queued. For example, we do
// not call Forget if a transient error occurs, instead the item is
// put back on the workqueue and attempted again after a back-off
// period.
…
// We expect strings to come off the workqueue. These are of the
// form namespace/name. We do this as the delayed nature of the
// workqueue means the items in the informer cache may actually be
// more up to date that when the item was initially put onto the
// workqueue.
…
// As the item in the workqueue is actually invalid, we call
// Forget here else we'd go into a loop of attempting to
// process a work item that is invalid.

1. Copy Clients to Reconciler Struct
2. Create a Queue for Reconcile Requests (namespace/name)
3. Add EventHandlers for all Object Types that you are interested in

a. Don’t Enqueue for Deletion Events on the Reconciled Type
i. Unless you have a finalizer, then you should

b. Do Enqueue for Deletion Events on Owned Types
i. But find the owner of the object to Reconcile instead

1. Write Handlers to walk owners References to find parents
a. Be sure to handle Tombstones correctly

i. Actually maybe we don’t need to do that anymore?
c. Write Logic to Turn Objects Into Keys

i. Type Cast Request to String
1. Error Handling if this fails

4. Start Worker Threads
a. But not too many

5. Start Informers
a. Wait For Cache To Sync

7.
Begin Popping from Queue and Calling

Reconcile
a.

Error Handling For Reconcile

b.
Use Ratelimiting when Requeuing

c.
Forget the Object from the Queue

i.
Unless there is a transient

error - then don’t Forget

8.
Reconcile

 Object

a.
Split S

trin
g Into

Namespace / N
ame

b.
Check

for u
nowned

objects
 usin

g owner

reference

9.
Setup Signal Handlers

a.
Unix

b.
Windows

10.
Generate Clients

a.
Listers as well

Controllers are Simple?

Which is the real Sample Controller?

Sample Controler + Core Kubernetes Controller + Third Party Operator

● Unmodified Copy-Pasted Functions
● Initialization and Instantiation of Deps
● Plumbing and Wiring

Controllers Should Be Simple

65% of the sample controller code is…

(proper noun)controller-runtime
a Go standard library for controllers

package main

import (
"controllers"

)

Native Controller Support in Go 1.12!

Just Kidding

(proper noun)controller-runtime
a Go standard library for controllers

package main

import (
"sigs.k8s.io/controller-runtime/pkg/builder"

)

Seriously though, use this instead

Create Controller

Watch Object

Watch Owned Objects

The magic of abstractions...

Simple Declarations
(Owns)

Helpers for Common Cases
(EnqueueRequestForObject)

Flexible Lower-Level Interfaces
(EventHandler, Source)

API Machinery
(🝒🝓🝖🝘🝢🝤 🝥🝧🝩🝪🝭🝮)

Sophisticated Watch APIs

The.ForType builder function is really just a call to .Watch with
EnqueueRequestForObject

Sophisticated Watch APIs

The.Owns builder function is really just a call to .Watch with
EnqueueRequestForOwner

Sophisticated Watch APIs

Users can implement their own patterns by providing a function to map
events to objects

Extending Watch APIs

For Developers...

For Ops...

Standard…
● Behavior
● Logging
● Metrics
● Error handling
● Error degradation
● Maintenance

For Platform Developers...

Build high-level abstractions with common building blocks:

● Kubebuilder
● Operator SDK
● Maestro Declarative Operator (via kubebuilder)
● AddOnOperator (via kubebuilder)

http://kubebuilder.io
https://github.com/operator-framework/operator-sdk
https://github.com/maestrosdk/maestro

Remember this...

Remember this...

It fits!

In conclusion...

package main

import (
"sigs.k8s.io/controller-runtime/pkg/builder"

)

Controllers Are Simple

Applause...

https://book.kubebuilder.io

https://book.kubebuilder.io

