ﬁ;-,c 2w e, _ ° KubeCon CloudNativeCon
2 . - 3 \ i » = Anan
¢ ah‘:. .L: T W o Europe 2019

- Writing Operators with
. Kubebuilder v2



Who Am |?

Solly Ross (@directxman12)
Software Engineer on GKE and KubeBuilder Maintainer

My mission is to make writing Kubernetes extensions less arcane



First of all, what’s an Operator?

A controller is a loop that reads desired state (“spec”), observed cluster state
(others’ “status”), and external state, and the reconciles cluster state and
external state with the desired state, writing any observations down (to our
own “status”).

All of Kubernetes functions on this model.

An operator is a controller that encodes human operational knowledge: how do
| run and manage a specific piece of complex software.

All operators are controllers, but not all controllers are operators.



So, how’s this going to work?



A 4-part miniseries...

What's How do | design ...actually make ...and make it
KubeBuilder? my first API... it run... look nice?



...with 3-act episodes

Learn the general process of things from slides Learn
Try building things yourself based on the goal objects
Review my solution from the Git repo

Try

Review



What'’s KubeBuilder?



Building Blocks + Opinions

KubeBuilder is a set of tooling and opinions how about how to structure
custom controllers and operators, built on top of...

Controller-runtime, which contains libraries for building the controller part of
your operator, and...

Controller-tools, which contains tools for generating
CustomResourceDefinitions for your operator



So, what are we building

We'll be building a Guestbook Operator, along the lines of the guestbook
tutorial (https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook).

The Guestbook contains two components: a frontend and a Redis instance.

We'll need to manage and deploy both for the app to work, and we'll want to
expose the frontend via a service.

Check out the goa'l/ directory if you want to see all the objects we'll need to
create.


https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook

How do | get started?

wget https://go.kubebuilder.io/dl/2.0.0-alpha.l/<linux-or-darwin> # and extract

git clone https://github.com/directxmanl2/kubebuilder-workshops /tmp/reference --branch start

kubebuilder init —--project-version 2 --domain <your-domain-here>

N See also https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook


https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
https://github.com/directxman12/kubebuilder-workshop
https://go.kubebuilder.io/releases/v2.0.0-alpha.0

What did we just do?

Initialize a new KubeBuilder project
Initialize a new Go module for our project
Generate deployment config for running in Kubernetes

Configure the API groups suffix (foo — foo.metamagical.io)



How do | design my first
API?



apiVersion: v1

H © P
What is an API, but ] kind:Pod
. . o metadata:
a complicated pile A name:my-app
2 namespace: default
of YAML?
spec:
containers:
Spec + Status + Metadata + List - args: [sh]
' image: gcr.io/bowei-gke/udptest
Spec holds desired state imagePullPolicy: Always
name: client
Status holds observed state
dnsPolicy: ClusterFirst
Metadata holds name/namespace/etc
List holds many objects status:

podIP: 10.8.3.11



Cool, but what does
that actually mean?




Cool, but what does
that actually mean?

The root object holds the spec, status,
and metadata

It's list holds multiple root objects.




Cool, but what does
that actually mean?

The spec holds some desired state.




Cool, but what does
that actually mean?

The status holds some observed state,
and status conditions.

Status Conditions let us communicate
object health to the user.




Rules of an APl Type

Fields must have JSON tags in camelCase
Fields may be

string

int32, resource.Quantity (fixed-point)
[Ibyte

bool

structs

slices

pointers (for optional data)




Try It!

kubebuilder create api --group webapp --kind GuestBook --version vl

Create an API group named webapp . <your-domain>
Create an API version webapp.<your-domain>/v1l

Add a new Kind GuestBook to that group, and a controller for it

SEDITOR api/vl/guestbook_types.go

make generate manifests

Generate the runtime.Object interface and CustomResourceDefinition manifests



Review!




Review!

RedisSpec
FollowerReplicas

RedisStatus {
Conditions []StatusCondition

LeaderService
FollowerService




Interlude: What's this about
Groups, Versions, and Kinds?

An API group is a collection of related API types.
We call each API type a Kind.

Each API group has one or more API versions, which let us change the API
over time

Each Kind is used in at least one Resource, which is a “use” the Kind in the
API (generally, these are one-to-one with Kinds). They're referred to in

lower-case.

Each Go type corresponds to a particular Group-Version-Kind.



But how do | actually
make it run?



Read, Reconcile,
Repeat

Read our root object
Fetch other objects we care about
Ensure those objects are in the right state

Write our root status out

Observed Cluster State Desired State

Deployment Status GuestBook Spec

Redis Spec

Reconcile

Desired Cluster State Observed State

Deployment Spec GuestBook Status
Service Spec Redis Status



One Kind to rule
them all

Each reconciler (control loop)
functions on a single Kind.

This kind may own other Kinds that it
creates, and may otherwise watch
kinds that it has relationships with.

Service

Deployment



Clients and Schemes and
Requests, oh my!

Each reconciler takes a request, and returns a result and error

Requests can use client.Get to turn the request into an actual object, and
CreateOrUpdate to ensure that an object is up-to-date.

Clients use a Scheme to associate Go types with Kinds. All types referenced
in a reconciler need to be added to the Scheme with
<api-package>.AddToScheme in main.go

When creating objects, make sure to mark that your object owns them with
SetControllerReference

Errors and Results can be used to trigger requeues. The reconciler will also be
called when in the cluster updates.



Cool, but what does
that actually mean?

Fetch our GuestBook
Ensure desired state

Update status with observed state




Try It (Briefly)!

SEDITOR controllers/guestbook_controller.go

kubectl create -f config/crd/bases

make run

kubectl create -f config/samples && kubectl describe guestbooks

Let's see if we can make our controller set a status field on our CRD.
Publish our CRDs to the API server and run our controller manager locally against the API server

Create and fetch our guestbook



Review (Briefly)!

Fetch our GuestBook

Update status some status condition




Idempotency

Reconcilers should be idempotent: reconciling on an object that needs
nothing done should have no side effects

Always take actions based on the observed cluster and external state, not the
event that triggered a reconciliation.

Prefer writing logic in terms of “ensure this is correct”, not specifically create
or update.

Use owner references to take care of delete for you, so that even after
uninstallation resources get cleaned up.



Cool, but what does
that actually mean?

Ensure desired state with CreateOrUpdate

Set StatusConditions to indicate health




Cool, but what does
that actually mean?

Add referenced API groups to our Scheme

Pass the Scheme to the reconciler




In case you need it...

Full GoDoc for controller-runtime:
https://godoc.org/sigs.k8s.io/controller-runtime

Example controller for controller-runtime:
https://godoc.org/sigs.k8s.io/controller-runtime#example-package


https://godoc.org/sigs.k8s.io/controller-runtime
https://godoc.org/sigs.k8s.io/controller-runtime#example-package

Try It!

SEDITOR controllers/guestbook_controller.go

kubectl replace -f config/crd/bases

make run

Publish our CRDs to the API server

Run our controller manager locally against the API server



Review!

Ensuring state inside CreateOrUpdate
(aim for idempotency)




Interlude:
Server-Side Apply?
Set all fields that we care about, server
computes the appropriate changes.

Coming soon to a cluster near you
(alpha in Kubernetes 1.14)!




Now how do | make it nice
and usable?



Printer Columns

Expose extra information in kubectl get, to feel like built-in resources:

kubectl get guestbooks
NAME URL DEPLOYMENT SERVICE

guestbook-sample http://35.238.150.235:8080 Healthy Healthy

Uses “markers” in the source on the Go type (closest non-godoc comment):

GuestBook




Samples

config/samples contains sample
objects for all of your CRDs.

Fill these in to provide samples to
your users, and to test out your
controller:




Try It!

SEDITOR api/vl/guestbook_types.go

make manifests && kubectl replace -f config/crd/bases

SEDITOR config/samples/guestbook/*.yaml && kubectl create -f config/samples

kubectl get guestbooks

Add printer columns and Replace our CRDs

Edit and Create our sample

List the objects in action



Interlude: Kustomize

Kustomize is a tool for declarative configuration management.
Kubebuilder uses it to composite optional patches when running the manager.

We'll have to install it (we'll putinin /tmp here, but you can put it elsewhere):

curl -sL -o kustomize

https://go.kubebuilder.io/kustomize/<linux-or-darwin>/amd64

mkdir -p /tmp/kustomize && mv kustomize /tmp/kustomize

EXPORT PATH=S$PATH:/tmp/kustomize




All together now!

make docker-build IMG=gcr.io/<your-project>/controller

make docker-push IMG=gcr.io/<your-project>/controller

SEDITOR config/default/manager_image_patch.yaml && make deploy

SBROWSER $(kubectl get guestbooks -o jsonpath='.ditems[].status.url')

Build and push our controller manager to GCR
Replace IMAGE_URL and Run out controller manager as a pod on the cluster

View the running guest book in your browser



If you're feeling precocious...

Check out the reference repository’ for additional tasks, like defaulting
webhooks.

Fill in support for launching Redis, if you haven't already!

Thttps://github.com/directxman12/kubebuilder-workshop


https://github.com/directxman12/kubebuilder-workshop

For Reference...

KubeBuilder Repository + Samples: https://sigs.k8s.io/kubebuilder
Controller-Runtime GoDocs: https://godoc.org/sigs.k8s.io/controller-runtime
KubeBuilder Book: https://book.kubebuilder.io

Workshop Repo: https://github.com/directxman12/kubebuilder-workshops


https://sigs.k8s.io/kubebuilder
https://godoc.org/sigs.k8s.io/controller-runtime
https://book.kubebuilder.io
https://github.com/directxman12/kubebuilder-workshops

